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ABSTRACT: 

The need for robust design that enables the products to ensure robust performance in diverse 

surroundings has been focused. Robust design guarantees robust performance in manufacturing 

variation of products and diverse use environment. In this study, a robust design method 

applicable to diverse design problems was proposed. In the proposed method, to use the robust 

index R, the weighted robust index RW, and the adjusted robust index RA as indexes of 

robustness, the proposed method is applicable to design problems in which distribution pattern of 

objective characteristic y is non-normal distribution with multi peak, the control factor x is 

adjustable. And, to confirm the effectiveness, the proposed method was applied to a public seat 

design. As a result of the verification, the solution obtained by the proposed method was better 

than the existing. It was confirmed that the proposed method was superior to the existing methods.  
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1. INTRODUCTION 

The environment surrounding design product has been diverse due to increased individuation of 

the user needs and globalization of markets. Therefore, the need for robust design that enables 

the products to ensure robust performance in diverse surroundings has been focused. Robust 

design guarantees robust performance in manufacturing variation of products and diverse use 

environment. In robust design, many methods including Taguchi method (Taguchi, G. 1993) have 

been proposed. However, the existing robust design methods (RDMs) are not applicable to all 

design problems as most RDMs are based on the premise that objective function, which is a 

relation expression of factors and objective characteristic, is linear. Therefore, it is considered that 

there are design problems to which existing RDMs are not applicable. 

The objective of this study is to clarify the characteristics of design problems to which existing 

RDMs are not applicable, to propose a RDM which is applicable to these diverse design problems, 

and to confirm the possible application and effectiveness of the proposed method by applying a 

design case. 

2. RDMS AND THEIR PROBLEMS 

RDMs can be classified into the methods based on experiment and the methods based on 

simulation. 

2. 1. RDMS BASED ON EXPERIMENTS 

RDMs based on experiments have their origin in the design of experiment. RDMs evaluate and 

improve the robustness of function on objective characteristic y, which is a physical value to 

express the design objective, by using the data obtained by full factorial designs experiment or 

orthogonal array experiment. Specifically, the first step is to get the average and standard 

deviation of y’s experimental value by experimenting with each level of control factor x, which is a 

factor that designer is able to control, and noise factor z, which is a factor that designer is unable 

to control. Using these data, the second step is to make optimization of two aims: to minimize the 

difference between the objective characteristic value and the target value τ , and to minimize the 
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variations of y. (Fig. 1) shows an example of orthogonal array and mathematical formula of 

concept based on experiment. 

In this study, four methods, Taguchi’s method, Otto’s method (Otto, K.N. and Antosson, E.K. 

1993), Sundaresan’s method (Sundaresan, S. Ishii, K. and Houser, D.R. 1991), and Yu’s method 

(Yu, J.C. and Ishii, K. 1993) were introduced as RDMs based on experiment. 

2. 2. RDMS BASED ON SIMULATIONS 

RDMs based on simulation can be further classified into the methods for transforming objective 

functions and the methods for transforming constraint functions, which expresses the relation 

between factors and constraint characteristics. Methods for transforming objective functions 

evaluate and improve the robustness of y. The first step is to transform the objective functions into 

different function based on the fluctuation of fluctuant factors (control factors and noise factors). 

The second step is to make optimization of two aims: to minimize the difference between the 

objective characteristic value and the target value, and to minimize the variations of y with the 

variations of fluctuant factors. As a result of these processes, a robust design solution which has 

the variations of y smaller than the existing design solution is obtained (Fig. 2).  

In this study, seven methods, Ramakrishnan’s method (Ramakrishnan, B. and Rao, S.S. 1996), 

Belegundu’s method (Belegundu, A.D. and Zhang, S. 1992), Arakawa’s method (Arakawa, M. 

and Yamakawa, H. 1995), Wilde’s method (Wilde, D.J. 1992), Zhu’s method (Zhu, J. and Ting, 
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Figure 1: Concept of RDMs based on experiment. 
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K.L. 2001), Gunawan’s method (Gunawan, S. and Azarm, S. 2004), and Eggert’s method (Eggert, 

R.J. 1991) were introduced as methods for transforming objective function. 

Next, methods for transforming constraint function evaluate and improve the robustness of 

constraint characteristic c, which is a constrained physical value, by transforming the constraint 

function into different function based on the fluctuation of fluctuant factors and configuring the 

constraint condition into a stringer one. As a result of these processes, a robust design solution 

which c does not depart from its feasible area with fluctuation of fluctuant factors is obtained (Fig. 

3).  

In this study, six methods, Parkinson’s method (1), Parkinson’s method (2) (Parkinson, A. 1995), 

Arakawa’s method, Sundaresan’s method, Eggert’s method and Yu’s method were introduced as 

methodsfor transforming constraint function. 
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Figure 2: Concept of methods for transforming objective function. 
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Figure 3: Concept of methods for transforming constraint function. 
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2. 3. PROBLEMS ASSOCIATED WITH RDMS 

For assessment above methods, seven characteristics of design problem were identified: linearity 

of function, differentiability and monotonicity of function, distribution pattern of fluctuant factors, 

independence of fluctuant factors, existence of tuning factors, units of fluctuant factors, quality of 

weight of objective characteristic value, and existence of adjusted factor, which is the control 

factor having variable range. Then existing methods were assessed if they were applicable to 

these problems. (Table 1) shows the result of this assessment. B rating indicates that the robust 

method is applicable to the design problem, and A rating indicates that the method is applicable to 

the problem effectively with little calculation amount.  In addition, C rating indicates that the 

method is applicable to the problem except when y is nominal-the-better characteristic. The result 

of assessment confirmed that these methods are not applicable to design problems in which a 

function is non-linear and fluctuant factors are dependent, weight of objective characteristic value 

is nonuniform, or control factor is adjustable. For example, in the case of considering probability 

distribution of y, existing methods are applicable to problems in which function is non-liner and the 

sum of squares of y is normal distribution or bilaterally-symmetric uniform as shown in (Fig. 4(a)). 

Table 1: Assessment table of problems for RDMs. 
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On the other hand, it is conceivable that distribution pattern of y is often non-normal in actual 

design problems. In the case where the function is strong non-liner, distribution pattern of y is 

non-normal as shown in (Fig. 4(b)). In addition, in the case where multi functions are fluctuant 

stochastically, distribution pattern of y is non-normal distribution with multi peak as shown in (Fig. 

4(c)) because of superposition of multi distribution. In the second case, there are a few errors 

between distribution pattern and normal distribution; moreover, it is possible to apply properly with 

Eggert’s method to consider chi-square distribution or gamma distribution. However, in the third 

case, there are big errors between distribution pattern and normal distribution, and it is difficult to 

relate to other distribution. Moreover, there is no method to proper evaluate the design problem 

with adjusted mechanism as shown in (Fig. 5). 
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Figure 4: Relation between objective function and probability distribution of y.  

 
 

Figure 5: Adjusted mechanism. 

 



  

 7

3. A PROPOSAL OF ROBUST DESIGN METHOD APPLICABLE TO DIVERSE DESIGN 

PROBLEMS 

The new method applicable to diverse design problems named RDM was proposed, which is 

applicable to all design problems including the problems to which existing method was not 

applicable as indicated in the second paragraph. In the proposed method, robustness was defined 

as the feasibility of the objective characteristic value being within tolerance. By expressing this 

concept with probability density function of y, the proposed method was applicable to above 

diverse design problems. Here are the evaluation indexes of robustness used in the proposed 

method. 

3. 1. The robust index R 

The robust index R was the feasibility of the objective characteristic value being within tolerance, 

and was calculated to integrate probability density function of y. The feasibility is expressed as 

follows:  

∫= u
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where p is probability density, p(y) is probability density function of the y, yl is the lower tolerance 

limit, yu is the upper tolerance limit, and τ is the target value. (Fig. 6) shows the concept of R. R is 

the evaluation index to minimize the sum of squares of y because it evaluates robustness by 

using the feasibility of the objective characteristic value being within tolerance. In this study, R 

was calculated using the Monte Carlo method. First, a random number of fluctuant factors were 

generated based on the probability density function of their fluctuation. Second, objective 

characteristic value was calculated based on a random number of them. Finally, R is calculated 

as follows: 
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Figure 6: Concept of the robust index R. 
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where s is the number of samples generated for a random number of fluctuant factors. 

3. 2. The weighted robust index RW 

Here, since R is only able to evaluate if the objective characteristic value is within tolerance or not, 

R is not able to evaluate the weight of the objective characteristic value. However, since a design 

problem has a target value in many cases, the weight of the objective characteristic value 

increases as the y approaches the target value. In this study, the weight of the objective 

characteristic value was expressed as a weighting function. RW that enables the weight of the 

objective characteristic value to be evaluated is expressed as follows: 
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where w is the weight of the objective characteristic value, and w(y) is the weighting function of 

the objective characteristic value. (Fig. 7) shows the concept of RW. RW is the evaluation measure 

to optimize two aims, to minimize the sum of squares of y and to maximize the weight of the 

objective characteristic value because it evaluates the feasibility of the objective characteristic 

value being within tolerance and the weight of the objective characteristic value. In this study, RW 

was calculated using the Monte Carlo method as in the case of R. RW is calculated as follows: 
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Figure 7: Concept of the weighted robust index RW. 
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R and RW are used depending on the need to consider the weight of objective characteristic value. 

3. 3. The adjusted robust index RA 

The adjusted robust index RA is the evaluation measure to add the concept of adjusted factor to R. 

Specifically, in the case where control factor has variable range, RA is the feasibility of the 

objective characteristic value being within tolerance for each control factor value ti in the range, 

and is expressed as the ratio of the sum of sets of combination of fluctuant factors in the case that 

objective characteristic value being within tolerance in entire set. 
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where i is level of adjusted factor, P[A] is the feasibility to happen event A. (Fig. 8) shows the 

concept of RA. RA is able to evaluate robustness in case where control factor has variable range.  

In addition, it can calculate variable range of control factor for additional design with adjusted 

mechanism to get more robustness, when design solution calculated by using R do not have 

enough robustness. As some examples of adjusted mechanism, design of automobile seat back 

structure and seat slide structure follow. RA was calculated using the Monte Carlo method, as in 

the case of R and RW. First, a random number of fluctuant factors were generated. Second, each 

combination of generated fluctuant factors and objective characteristic value in the case of each 

combination were calculated. Third, the case any of adjusted factors exists where objective 

characteristic value being within tolerance was calculated 1 otherwise was 0. Finally, the sum of 

them was divided by a random number. RW is calculated as follows: 
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4. CASE APPLICATIONS 

Finally, to confirm the effectiveness, the proposed method was applied to a public seat design 

preventing hip-sliding force FHS which is a source of discomfort with respect to sitting posture. 

Here, cushion angle θC which is the main factor to control FHS was selected as design object  

(Fig. 9). In the process of calculating design solution, to confirm the effectiveness of the proposed 

method, the solution calculated by Yu’s method with average and standard deviation (θC(Yu)) and 

the solution calculated by average only without considering sum of squares of y (θC(µ)) are 

(5)

(6)
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compared in addition to the design solution calculated by R and RW  (θC(R) and θC(RW)) (table 2). 

Moreover, probability distribution of y of each solution was compared (Fig. 10). According to 

(Table 2), R and RW in case of θC(R) and θC (RW) were 5 to 7 percent higher than θC(Yu) and θC(µ). This 

result confirmed that the proposed method advanced the feasibility of the objective characteristic 

value being within tolerance and the design solutions calculated by the proposed method have 

higher robustness. This consideration was confirmed by the fact that probability distribution within 

tolerance of θC(R) and θC(RW) were more than that of θC(Yu) and θC(µ). Moreover, to satisfy more users, 

proper variable range was calculated using the RA. As a result of this calculation, the solution 

satisfied with 95 percent of users with setting the variable range of cushion angle from 16.5 to 

19.3; therefore, it was confirmed that the proposed method were superior to the existing methods.  

5. CONCLUSIONS 

In this study, first, the characteristics of design problems which existing RDMs are not applicable 

were confirmed. Second, the robust design method applicable to diverse design problems was 
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Figure 8: Concept of the adjusted robust index RA. 
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Figure 9: Design object. 
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proposed as the method applicable to these problems. In the proposed method, the robust index 

R, the weighted robust index RW, and the adjusted robust index RA were used. Moreover, the 

proposed method was applied to a public seat design, and its possible application and 

effectiveness were indicated.  

Future study is to confirm the general versatility of the proposed method by applying to a wide 

range of design problems. 
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Table 2: Design solution of cushion angle. 

R RW

0.87 3.95

0.85 3.97
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